

Quick Protocol

DNall Plus Kit

DNA isolation based on silica technology

MiniPrep

For DNA Isolation from

Blood

Buffy coat

Animal tissue

Cultured cells

Bacteria

Body fluid

Serum

Plasma

CVS (Chorionic Villus Sampling)

Buccal cells

Insects

Hair

Rodent tail

Ear punches

Pap smear

Warts

Kit Content

Component	25 preps	100 preps
TLB	5 ml	20 ml
GLB	12.5 ml	50 ml
BWB1 (concentrate)	8 ml	2 x 16 ml
BWB2 (concentrate)	8 ml	2 x 16 ml
RRB	5 ml	20 ml
RJ-Protease	750 ml	2 X 1.25 ml
HiPure DR Column	25	100
Collection Tube	75	300

Recommended Starting Material

To reach optimized results it is better to follow as listed here. The size of recommended material is written in Table 1.

Table 1: Appropriate size of starting material

Sample	Size of Starting Material	
Blood*	Up to 250 μl	
Buffy coat	Up to 200 μl	
Animal tissue	All tissue kind expect spleen: up to 25 mg (Spleen up to 10 mg)	
Bacteria cells	2.5 x 10 ⁸ to 2 x 10 ⁹	
Cultured cell	≤5 x 10 ⁶ cells	

^{*}White Blood Cell counts are extremely variable from a person to person and therefore, for optimum results its recommended to determine cell counts for choosing the best protocol for purification. For healthy individuals, white blood cell counts normally from 4-10 million per 1ml blood; however, depending on disease state, cell counts may be higher or lower than the normal range.

Before Start

- If GLB or TLB forms precipitate, please warm it to 56°C until the precipitate has fully dissolved. This is due to storage condition and will not influence the efficiency of buffer.
- Not forget to add the appropriate amount of ethanol (96–100%) to BWB1 and BWB2 as indicated on the bottle, before using for the first time, refer to washing buffer preparation.

Washing Buffer Preparation

Before the first use, add appropriate amount of ethanol (96-100%) to each washing buffer tube, then mix thoroughly to prepare washing buffer, refer to Table 2. Do not forget to tick the check box on the bottle label to indicate that ethanol has been added. Before each use mix reconstituted buffer by shaking. Storing at room temperature.

Table 2: Washing buffer preparation

Buffer Name	Concentrated Volume	Amount of Ethanol	Final Volume
BWB1	16 ml	24 ml	40 ml
BWB2	16 ml	24 ml	40 ml

Procedure of silica-based DNA isolation in quick look

Protocols

Protocol 1: Isolation of Genomic DNA (Animal cell, Cells, Body fluid, Serum and plasma)

Sample type:

- Animal blood
- Cells
- Body fluid
- Serum
- Plasma

Some tips to know

- All centrifugation steps are carried out at room temperature (15–25°C).
- If RNase treatment is desired, Prime-RNase can be ordered separately from ROJETechnologies, Cat NO EB983013.
- Do not forget to add the appropriate amount of ethanol (96–100%) to BWB1 and BWB2 as indicated on the bottle, before using for the first time, refer to washing buffer preparation part.
- If GLB forms precipitate, please warm it to 56°C until the precipitate has fully dissolved.

Process

• Add 25 µl RJ-Protease to a 1.5 ml clean microcentrifuge tube. Add 250 µl blood (plasma, serum, body fluid and etc.) to the tube. Then add 250 µl GLB. Pulse vortex for 15 s and incubate at 56 °C for 12 min.

Note: For cell pellets, add 250 μ l GLB directly to the pellet or alternatively, for direct lysis of cells grown in a monolayer, add the appropriate amount of GLB to the cell-culture dish (refer to Table 1). Collect the lysate with a rubber policeman. Transfer the lysate into a microcentrifuge tube. Vortex to mix, and ensure that no cell clumps are visible.

Optional: This protocol is specialized for DNA isolation. For usual and routine applications RNase treatment isn't needed. If RNA-free genomic DNA is required, add 10 μ l Prime-RNase A (Cat NO. EB983013), mix by vortexing, and incubate for 5 min at room temperature before going to step 2.

- Add 250 µl ethanol (96-100%) to the lysate, mix by pulse vortexing for 15 s, then centrifuge briefly.
- Gently, pipette the mixture to a HiPure DR column placed in a 2 ml collection tube (supplied in the kit box). Centrifuge at 8000 rpm for 1 min. Discard flow-through and place the HiPure DR column in new collection tube (provided in the kit box).

Note: If the lysate did not pass the column, centrifuge at full speed until it passes through the column.

- Add 700 µl BWB1 and centrifuge for 1 min at 8000 rpm, discard the flow-through and place the HiPure DR column in the previous collection tube.
- Add 600 µl BWB2 and centrifuge for 3 min at 14000 rpm. Discard both the flow-through and the collection tube. Place the HiPure DR column in a new clean 1.5 ml microcentrifuge tube (not provided).

Note: To avoid ethanol carry over, be careful that the column does not come into contact with the flow-through, if it happens discard the flow-through, place the column back in a collection tube and centrifuge for another 1 min at 14000 rpm.

 Pipette 50-100 µl RRB directly onto HiPure DR column. Incubate at room temperature for 1-5 min. Centrifuge it at 8000 rpm for 1 min.

Note: If the expected DNA yield is more than the yield from pervious step, put the HiPure DR column on a new microtube and add another 50-200 μ l RRB, incubate for 5 min at room temperature. Then, centrifuge for 1 min at 8000 rpm. However, it is possible to pass the follow-through from step 6 once more to obtain DNA with higher concentrations.

Protocol 2: Isolation of Genomic DNA (Buffy coat)

Sample type: Buffy coat

Some tips to know

- All centrifugation steps are carried out at room temperature (15–25°C).
- If RNase treatment is desired, Prime-RNase A can be ordered separately from ROJETechnologies, Cat No. EB983013.
- Do not forget to add the appropriate amount of ethanol (96–100%) to BWB1 and BWB2 as indicated on the bottle, before using for the first time, refer to washing buffer preparation part.

 If GLB forms precipitate, please warm it to 56°C until the precipitate has fully dissolved.

Process

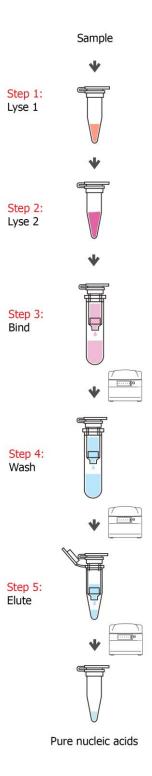
• Add 25 μl RJ-Protease to a 1.5 ml clean microcentrifuge tube. Add 200 μl buffy coat to the tube. Then add 200 μl GLB. Pulse vortex for 15 s and incubate at 56 °C for 12 min.

Optional: This protocol is specialized for DNA isolation. For usual and routine applications RNase treatment isn't needed. If RNA-free genomic DNA is required, add 10 μ l Prime-RNase A (Cat NO. EB983013), mix by vortexing, and incubate for 5 min at room temperature before going to step 2.

- Add 200 µl ethanol (96-100%) to the lysate, mix by pulse vortexing for 15 s, then centrifuge briefly.
- Gently, pipette the mixture to a HiPure DR column placed in a 2 ml collection tube (supplied in the kit box). Centrifuge at 13000 rpm for 1 min. Discard flow-through and place the HiPure DR column in new collection tube (provided in the kit box).

Note: If the lysate did not pass the column, centrifuge at full speed until it passes through the column.

- Add 600 µl BWB1 and centrifuge for 1 min at 13000 rpm, discard the flow-through and place the HiPure DR column in the previous collection tube.
- Add 600 µl BWB2 and centrifuge for 3 min at 14000 rpm. Discard both the flow-through and the collection tube. Place the HiPure DR column in a new clean 1.5 ml microcentrifuge tube (not provided).


Note: To avoid ethanol carry over, be careful that the column does not come into contact with the flow-through, if it happens discard the flow-through, place the column back in a collection tube and centrifuge for another 1 min at 14000 rpm.

Pipette 50-200 µl RRB directly onto HiPure DR column. Incubate at 56°C for 3-5 min.
 Centrifuge it at 8000 rpm for 1 min.

Note: If the expected DNA yield is more than the yield from pervious step, put the HiPure DR column on a new microtube and add another 50-200 μ l RRB, incubate for 5 min at 56 °C. Then, centrifuge for 1 min at 13000 rpm. However, it is possible to pass the follow-through from step 6 once more to obtain DNA with higher concentrations.

Procedure of silica-based DNA isolation in quick look

Protocol 3: Isolation of Genomic DNA (Animal tissues)

Sample type: Animal tissues (fresh and frozen)

Some tips to know

- All centrifugation steps are carried out at room temperature (15–25°C) in a microcentrifuge.
- If RNase treatment is desired, Prime-RNase A, can be ordered separately from ROJETechnologies, Cat No. EB983013.
- If TLB or GLB forms precipitate, please warm it to 56°C until the precipitate has fully dissolved. This is due to storage condition and won't influence the efficiency of the buffer.
- Do not forget to add the appropriate amount of ethanol (96–100%) to BWB1 and BWB2
 as indicated on the bottle, before using for the first time, refer to washing buffer
 preparation part.
- For frozen samples, equilibrate them to room temperature. Avoid repeated freezing and thawing of samples which might lead to a decrease in DNA size.

Process

- Select one of the sample preparation methods here (a, b or c) then Place the prepared sample in a 1.5 ml microcentrifuge tube.
 - Cut the tissue into small pieces. Then, Place the sample in to a clean microcentrifuge tube.
 - Use Micropestle alternatively homogenizer to grind the tissue in TLB Buffer before addition of RJ-Protease.
 - Ground the samples under liquid nitrogen (recommended for samples which are difficult to lyse).
- Add 180 µl TLB and then add 25 µl RJ-Protease to the sample. Mix thoroughly by pulse vortexing for 30 s and then incubate at 56°C for 1-2 h until the tissue is completely lysed. Pulse vortex every 10 min during incubation to intersperse the sample, or place it in a thermomixer or shaking water bath.

Optional: This protocol is specialized for DNA isolation. For usual and routine applications RNase treatment isn't needed. If RNA-free genomic DNA is required, add $10 \, \mu l$ Prime-RNase A (Cat No. EB983013), mix by vortexing, and incubate for 5 min at room temperature before going to step 3.

- Add 200 µl GLB to the mixture, mix by pulse vortexing for 10 s and then incubate at 70°C for 10 min.
- Add 200 µl absolute ethanol, then mix thoroughly by pulse vortexing for 15 s.
- Pipette the mixture from step 4 to a HiPure DR column placed in a 2 ml collection tube (supplied in the kit box). Centrifuge at 13000 rpm for 1 min. Discard flow-through and place the HiPure DR column in the collection tube again.

Note: If the lysate did not pass the column, centrifuge at full speed until it passes through the column.

- Add 600 µl BWB1 and centrifuge for 1 min at 13000 rpm, just discard the flow-through.
 Place the HiPure DR column in the previous collection tube and go to the next step.
- Add 600 µl BWB2 and centrifuge for 3 min at 14000 rpm. Discard both the flow-through and the collection tube. Place the HiPure DR column in a new clean 1.5 ml microcentrifuge tube (not provided).

Note: To avoid ethanol carry over, be careful that the column does not come into contact with the flow-through, if it happens discard the flow-through, place the column back in a collection tube and centrifuge for another 1 min at 14000 rpm.

Pipette 50-200 µl RRB directly onto HiPure DR column. Incubate at room temperature for
 1-5 min. Centrifuge it at 12000 rpm for 1 min.

Note: If the expected DNA yield is more than the yield from pervious step, put the HiPure DR column on a new microtube and add another 50-200 μ l RRB, incubate for 5 min at room temperature. Then, centrifuge for 1 min at 12000 rpm. However, it is possible to pass the follow-through from step 8 once more to obtain DNA with higher concentrations.

Protocol 4: Isolation of Genomic DNA (Bacteria, gram negative)

Sample type: Bacteria (gram negative)

Some tips to know

- All centrifugation steps are carried out at room temperature (15–25°C) in a microcentrifuge.
- If RNase treatment is desired, Prime-RNase A, can be ordered separately from ROJETechnologies, Cat No. EB983013.
- If TLB or GLB forms precipitate, please warm it to 56°C until the precipitate has fully dissolved. This is due to storage condition and won't influence the efficiency of the buffer.

- Do not forget to add the appropriate amount of ethanol (96–100%) to BWB1 and BWB2
 as indicated on the bottle, before using for the first time, refer to washing buffer
 preparation part.
- For frozen samples, equilibrate them to room temperature. Avoid repeated freezing and thawing of samples which might lead to a decrease in DNA size.

Process

- Calculate the bacteria cell number (refer to appendix 3, in main handbook). Collect the cell
 by centrifugation at 10000 rpm for 10 min. Discard the supernatant.
- Add 180 µl TLB and then 25 µl RJ-Protease. Mix thoroughly by pulse vortexing for 30 s, then incubate at 56°C for 1-2 h until the lysate becomes clear. Pulse vortex every 10 min during incubation to intersperse the sample, or place it in a thermomixer or shaking water bath.

Optional: This protocol is specialized for DNA isolation. For usual and routine applications RNase treatment isn't needed. If RNA-free genomic DNA is required, add $10 \, \mu l$ Prime-RNase A (Cat No. EB983013), mix by vortexing, and incubate for 5 min at room temperature before going to step 3.

- Add 200 µl GLB, mix by pulse vortexing for 10 s, then incubate at 70°C for 10 min.
- Add 200 µl absolute ethanol, then mix thoroughly by pulse vortexing for 15 s.
- Pipette the mixture from step 4 to a HiPure DR column placed in a 2 ml collection tube (supplied in the kit box). Centrifuge at 13000 rpm for 1 min. Discard flow-through and place the HiPure DR column in the collection tube again.

Note: If the lysate did not pass the column, centrifuge at full speed until it passes through the column.

- Add 700 µl BWB1 and centrifuge for 1 min at 13000 rpm, discard the flow-through. Place the HiPure DR column in the previous collection tube and go to the next step.
- Add 600 µl BWB2 and centrifuge for 3 min at 14000 rpm. Discard both the flow-through and the collection tube. Place the HiPure DR column in a new clean 1.5 ml microcentrifuge tube (not provided).

Note: To avoid ethanol carry over, be careful that the column does not come into contact with the flow-through, if it happens discard the flow-through, place the column back in a collection tube and centrifuge for another 1 min at 14000 rpm.

Pipette 50-200 µl RRB directly into HiPure DR column. Incubate at room temperature for
 1-5 min. Centrifuge it at 12000 rpm for 1 min.

Note: If the expected DNA yield is more than the yield from pervious step, put the HiPure DR column on a new microtube and add another 50-200 μ l RRB, incubate for 5 min at room temperature. Then, centrifuge for 1 min at 12000 rpm. However, it is possible to pass the follow-through from step 8 once more to obtain DNA with higher concentrations.

Protocol 5: Isolation of Genomic DNA (Bacteria, gram positive)

Sample type: Bacteria (gram positive)

Some tips to know

- All centrifugation steps are carried out at room temperature (15–25°C) in a microcentrifuge.
- For gram positive bacteria like B. subtilis, Lysozyme (Cat No. EB983017) should be ordered separately.
- Prepare the lysis buffer as follows:

20 mM Tris.HCl, pH 8.0

2 mM sodium EDTA

1.2% Triton® X-100

add lysozyme to 20 mg/ml (immediately before use).

- Preheat a heat block or water bath to 37 °C.
- If RNase treatment is desired, Prime-RNase A, can be ordered separately from ROJETechnologies, Cat No. EB983013.
- If TLB or GLB forms precipitate, please warm them to 56°C until the precipitate has fully dissolved. This is due to storage condition and won't influence the efficiency of the buffer.
- Do not forget to add the appropriate amount of Ethanol (96–100%) to BWB1 and BWB2
 as indicated on the bottle, before using for the first time, refer to washing buffer
 preparation part.
- For frozen samples, equilibrate them to room temperature. Avoid repeated freezing and thawing of samples which might lead to a decrease in DNA size.

Process

- Calculate the bacteria cell number (refer to appendix 3, in main handbook). Collect the cell by centrifugation at 10000 rpm for 10 min. Discard the supernatant.
- Resuspend the pellet, add 180 µl enzymatic lysis buffer. Incubate 30-60 min at 37 °C.
- Add 200 μ l GLB and then 25 μ l RJ-Protease. Mix thoroughly by pulse vortexing for 30 s and then incubate at 56 °C for 30-60 min until the sample is completely lysed. Pulse vortex every 10 min during incubation to intersperse the sample, or place it in a thermomixer or shaking water bath.

Optional: This protocol is specialized for DNA isolation. For usual and routine applications RNase treatment isn't needed. If RNA-free genomic DNA is required, add $10 \, \mu l$ Prime-RNase A (Cat No. EB983013), mix by vortexing, and incubate for 5 min at room temperature before going to step 4.

- Centrifuge at 15000 rpm for 2 min. Pour supernatant to clean tube.
- Add 200 µl absolute ethanol, then mix thoroughly by pulse vortexing for 15 s.
- Pipette the mixture from step 5 to a HiPure DR column placed in a 2 ml collection tube (supplied in the kit box). Centrifuge at 13000 rpm for 1 min. Discard flow-through and place the HiPure DR column in the collection tube again.

Note: If the lysate did not pass the column, centrifuge at full speed until it passes through the column.

- Add 700 µl BWB1 and centrifuge for 1 min at 13000 rpm, just discard the flow-through.
 Place the HiPure DR column in the previous collection tube and go to the next step.
- Add 600 µl BWB2 and centrifuge for 3 min at 14000 rpm. Discard both the flow-through and the collection tube. Place the HiPure DR column in a new clean 1.5 ml microcentrifuge tube (not provided).

Note: To avoid ethanol carry over, be careful that the column does not come into contact with the flow-through, if it happens discard the flow-through, place the column back in a collection tube and centrifuge for another 1 min at 14000 rpm.

Pipette 50-200 µl RRB directly into HiPure DR column. Incubate at room temperature for
 1-5 min. Centrifuge it at 12000 rpm for 1 min.

Note: If the expected DNA yield is more than the yield from pervious step, put the HiPure DR column on a new microtube and add another 50-200 μ l RRB, incubate for 5 min at room temperature. Then, centrifuge for 1 min at 12000 rpm. However, it is

possible to pass the follow-through from step 9 once more to obtain DNA with higher concentrations

Protocol6

A: Isolation of Viral DNA from HPV

Sample type:

- Pap smear
- Body fluid
- Serum
- Plasma

Some tips to know

- Do not forget to add the appropriate amount of ethanol (96–100%) to BWB1 and BWB2 as indicated on the bottle, before using for the first time, refer to the washing buffer preparation part.
- If GLB and TLB forms a precipitate, please warm it to 56°C until the precipitate has fully dissolved.
- Suggestion to store HiPure DR column at 2-8 °C.
- For samples with high viscosity, is better to add 500 μ l injectable water to it and vortex it for 15s.

Process

- Add 30 μ l RJ-Protease to a 1.5 ml clean microcentrifuge tube. Add 300 μ l blood (plasma, serum, body fluid and etc.) to the tube. Then add 500 μ l GLB. Pulse vortex for 20 s and incubate at 60 °C for 20 min. Every 3 minutes invert it 5 times.
- Add 500 μ l cold ethanol (96-100%) to the lysate, mix by pulse vertexing for 10 s, then centrifuge briefly.
- Gently, pipette the mixture to a HiPure DR column placed in a 2 ml collection tube (supplied in the kit box). Centrifuge at 8000 rpm for 1 min.

Discard flow-through and place the HiPure DR column in the new collection tube (provided in the kit box).

- **Note:** If the lysate did not pass the column, centrifuge at full speed until it passes through the column.
- Add 500 μ l BWB1 and centrifuge for 1 min at 8000 rpm, discard the flowthrough and place the HiPure DR column in the previous collection tube.
- Add 500 μ l BWB2 and centrifuge for 3 min at 14000 rpm. Discard both the flow-through and the collection tube. Place the HiPure DR column in a new clean 1.5 ml microcentrifuge tube (not provided).
- **Note:** To avoid ethanol carryover, be careful that the column does not come into contact with the flow-through, if it happens discard the flow-through, place the column back in a collection tube, and centrifuge for another 1 min at 14000 rpm.
- Pipette 35 μ l RRB directly onto the HiPure DR column. Incubate at room temperature for 3-5 min. Centrifuge it at 13000 rpm for 1 min.
- **Note:** If the expected DNA yield is more than the yield from the previous step, put the HiPure DR column on a new microtube and add another 30-50 µl RRB, incubate for 5 min at room temperature. Then, centrifuge for 1 min at 13000 rpm. However, it is possible to pass the follow-through from step 6 once more to obtain DNA with higher concentrations.

- B: Isolation of Viral DNA from HPV
- · Sample type:
- Harder samples
- Warts
- Tissue biopsy

Some tips to know

- Do not forget to add the appropriate amount of ethanol (96–100%) to BWB1 and BWB2 as indicated on the bottle, before using for the first time, refer to the washing buffer preparation part.
- If GLB and TLB forms a precipitate, please warm it to 56°C until the precipitate has fully dissolved.
- Suggestion to store HiPure DR column at 2-8 °C.
- For samples with high viscosity, is better to add 500 μ l injectable water to it and vortex it for 15s.

Process

- Add 35 μ l RJ-Protease to a 1.5 ml clean microcentrifuge tube. Add 300 μ l sample to the tube. Then add 200 μ l TLB. Stylish 5 seconds, Pulse vortex for 20 s, and incubate at 60 °C for 15 min. Every 3 minutes pulse vortex.
- Add 300 µl of GLB to the solution from the previous step and vortex for 20 seconds and incubate for 3 minutes at 60°C.
- Add 300 µl ethanol (96-100%) to the lysate, mix by pulse vertexing for
 15 s, then centrifuge briefly.
- Gently, pipette the mixture to a HiPure DR column placed in a 2 ml collection tube (supplied in the kit box). Centrifuge at 8000 rpm for 1 min. Discard flow-through and place the HiPure DR column in the new collection tube (Provided in the kit box).
- **Note:** If the lysate did not pass the column, centrifuge at full speed until it passes through the column.

- Add 700 μ l BWB1 and centrifuge for 1 min at 8000 rpm, discard the flowthrough and place the HiPure DR column in the previous collection tube.
- Add $600 \mu l$ BWB2 and centrifuge for 3 min at 14000 rpm. Discard both the flow-through and the collection tube. Place the HiPure DR column in a new clean 1.5 ml microcentrifuge tube (not provided).
- **Note:** To avoid ethanol carryover, be careful that the column does not come into contact with the flow-through, if it happens discard the flow-through, place the column back in a collection tube, and centrifuge for another 1 min at 14000 rpm.
- Pipette 35 μ l RRB directly onto the HiPure DR column. Incubate at RT for 3-5 min. Centrifuge it at 13000 rpm for 1 min.