Quick Protocol

PlasJia Mini Plasmid Extraction Kit

DNA isolation based on silica technology

• MiniPrep

For DNA Isolation from

Bacterial Cultured Cell

2022 ROJETechnologies, all rights reserved

Kit Content

Component	50 preps	
SOB	12.5 ml	
PLB	12.5 ml	
NOT	17.5 ml	
PWB (Concentrated)	12.5 ml	
PEB	5 ml	
Prime RNase A	1.5 mg	
HiPure DR Column Column	50	
Collection tube	100	

Recommended Starting Material

Growth of Bacterial Cultures

- Pick a single colony from a freshly streaked selective plate to inoculate 1-5 ml of LB medium supplemented with the appropriate selection antibiotic. Incubate for 12-16 hours at 37°C while shaking at 200-250 rpm. Use a tube or flask with a volume of at least 4 times the culture volume.
- Harvest the bacterial culture by centrifugation at 13,000 rpm in a microcentrifuge for 3 min at room temperature. Decant the supernatant and remove all remaining medium.

Do not overload the column

- For high-copy-number plasmids, do not process more than 5 ml of bacterial culture. If more than 5 ml of such a culture are processed, the spin column capacity (20 µg of dsDNA) will be exceeded and no increase in plasmid yield will be obtained.
- For low-copy-number plasmids, it may be necessary to process larger volumes of bacterial culture (up to 10 ml) to recover a sufficient quantity of DNA.

Before Start

- All centrifugation steps are carried out at room temperature (15–25°C).
- Do not forget to add the appropriate amount of ethanol (96%–100) to PWB as indicated on the bottle, before using for the first time, refer to washing buffer preparation part.
- Check the Lysis Solution (PLB) and the Neutralization Solution (NOT) for salt precipitation before each use. Redissolve any precipitate by warming the solution at 37°C, then cool back down to 25°C before use. Do not shake the Lysis Solution too vigorously.
- Both the Lysis Solution (PLB) and the Neutralization Solution (NOT) contain irritants. Wear gloves when handling these solutions.
- Add RNase A (1.5 mg) to SOB, mix and store at 4°C. After addition of RNase A, the Resuspension Solution (SOB) can be used for 6 months when stored at 4°C.

Buffer Preparation


- Add Prime RNase A (1.5mg) to SOB, mix and store at 4°C. After addition of RNase A, the Resuspension Solution (SOB) can be used for 6 months when stored at 4°C.
- Add 12.5ml ethanol (96-100%) to PWB before use.

Table 1: Washing buffer preparation

Buffer Name	Concentrated Volume	Amount of Ethanol	Final Volume
PWB	12.5	12.5	25

Procedure of silica-based DNA isolation in quick look

Protocol

Protocol: Isolation of Plasmid DNA

Sample type:

• Bacteria Cultured Cell

Some tips to know

- All centrifugation steps are carried out at room temperature (15–25°C).
- Do not forget to add the appropriate amount of ethanol (96%–100) to PWB as indicated on the bottle, before using for the first time, refer to washing buffer preparation part.
- Check the Lysis Solution (PLB) and the Neutralization Solution (NOT) for salt precipitation before each use. Redissolve any precipitate by warming the solution at 37°C, then cool back down to 25°C before use. Do not shake the Lysis Solution too vigorously.
- Both the Lysis Solution (PLB) and the Neutralization Solution (NOT) contain irritants. Wear gloves when handling these solutions.
- Add Prime RNase A (1.5 mg) to SOB, mix and store at 4°C. After addition of RNase A, the Resuspension Solution (SOB) can be used for 6 months when stored at 4°C.

Process

- 1- Growth of bacterial cultures in tube or falcon and harvesting: Harvest the bacterial cells from 1 ~ 5ml recombinant E. *coli* culture by centrifugation of 13,000 rpm in a conventional, table-top micro-centrifuge for 3 min at room temperature.
- 2- Add 250 µl of SOB to the collected cells and completely re-suspend by vortexing or pipetting.
- 3- Add 250 μl of PLB and mix by inverting the tube 3~5 times by inverting, gently and incubate for 1min: Vortexing may cause shearing of genomic DNA. Do not vortex.
- 4- Add 350 μl of NOT and immediately mix by inverting the tube 3~5 times, gently:
 Genomic DNA and cell debris will be formed and insoluble complex. Do not vortex.
- 5- Centrifugation the tube at 13,000 rpm, 4 ~ 25°C for 10 min in micro-centrifuge: A compact white pellet will be appeared at the bottom of the tube.
- 6- Transfer the supernatant (cleared lysate) to the spin column with collection tube and centrifuge at 13,000 rpm for 1 min: Pour off the flow-through and assemble the spin column with the 2.0 ml collection tube.
- 7- Add 500 μl of Washing Buffer (PWB) to the spin column with collection tube and centrifuge at 13,000 rpm for 1 min: Pour off the flow-through and assemble the spin column with the 2.0 ml collection tube.
- 8- Dry the spin column by additional centrifugation at 13,000 rpm for 3 min to remove the residual ethanol in spin column.
- 9- Transfer the spin column to the new 1.5 ml micro-centrifuge tube (Not provided).
- 10- Add 30 \sim 100 μ l of PEB or Nuclease free water to the spin column with microcentrifuge tube, and let stand for at least 1 min.
- 11- Elute the plasmid DNA by centrifugation at 13,000 rpm for 1 min.
- 12-Discard the column and store the purified plasmid DNA at -20°C.